Search results

1 – 3 of 3
Article
Publication date: 25 February 2022

Yazhou Wang, Ningning Xie, Likun Yin, Tong Zhang, Xuelin Zhang, Shengwei Mei, Xiaodai Xue and Kumar Tamma

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational…

Abstract

Purpose

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational framework, applied for the fluid dynamics with illustrations to incompressible Navier–Stokes equations.

Design/methodology/approach

The proposed error estimator is universal and versatile that it works for the entire subsets of the GS4-1 framework, encompassing the nondissipative Crank–Nicolson method, the most dissipative backward differential formula and anything in between. It is new and novel that the cumbersome design work of error estimation for specific time integration algorithms can be avoided. Regarding the numerical implementation, the local error estimation has a compact representation that it is determined by the time derivative variables at four successive time levels and only involves vector operations, which is simple for numerical implementation. Additionally, the adaptive time-stepping is further illustrated by the proposed error estimator and is used to solve the benchmark problems of lid-driven cavity and flow past a cylinder.

Findings

The proposed computational procedure is capable of eliminating the nonphysical oscillations in GS4-1(1,1)/Crank–Nicolson method; being CPU-efficient in both dissipative and nondissipative schemes with better solution accuracy; and detecting the complex physics and hence selecting a suitable time step according to the user-defined error threshold.

Originality/value

To the best of the authors’ knowledge, for the first time, this study applies the general purpose GS4-1 family of time integration algorithms for transient simulations of incompressible Navier–Stokes equations in fluid dynamics with constant and adaptive time steps via a novel and universal error estimator. The proposed computational framework is simple for numerical implementation and the time step selection based on the proposed error estimation is efficient, benefiting to the computational expense for transient simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Hazel Melanie Ramos, Likun Zhan and Harini Jayasinghe

This paper aims to explore the succession intentions of daughters in family businesses in Sri Lanka by shedding light on the motives behind their willingness to succeed in the…

Abstract

Purpose

This paper aims to explore the succession intentions of daughters in family businesses in Sri Lanka by shedding light on the motives behind their willingness to succeed in the family business.

Design/methodology/approach

A qualitative approach using semi-structured interviews was used to explore the factors that may influence succession intentions among a group of seven prospective successor-daughters.

Findings

Findings showed that while a majority of the daughters sampled have positive succession intentions, there were a few who were either undecided or unwilling. Interestingly, what motivated some daughters to be willing successors was also considered demotivating for others. Daughters perceived succession in family businesses to be impacted by both personal and family background, traditional gender-role expectations and other socio-cultural factors.

Originality/value

Findings from this study provide key insights into gender-related issues with regard to succession in family businesses.

Details

Journal of Entrepreneurship in Emerging Economies, vol. 16 no. 1
Type: Research Article
ISSN: 2053-4604

Keywords

Article
Publication date: 5 December 2017

Meng Jiang, Ze-Ming Wang, Zhong-Ze Zhao, Kun Li and Fu Yang

The purpose of this paper is to demonstrate a simple fiber sensor for simultaneous measurement of liquid refractive-index (RI) and temperature.

Abstract

Purpose

The purpose of this paper is to demonstrate a simple fiber sensor for simultaneous measurement of liquid refractive-index (RI) and temperature.

Design/methodology/approach

The sensor structure is formed by a long period fiber grating cascaded with a section of thin-core fiber. The long period fiber grating is fabricated on single mode fiber, followed by a section of 20-mm length thin-core fiber which is a modal interferometer.

Findings

Cladding mode interference between long period fiber grating and thin-core fiber modal interferometer is weak in the experimental investigation. Both of these two cladding mode type fiber devices are sensitive to surrounding RI and temperature. So the RI and temperature can be measured simultaneously by monitoring the spectral characteristics of the compound sensor. The sensitivity is calibrated and sensor matrix is provided in the experiment.

Originality/value

This proposed fiber sensor is simple, tough, cost-effective and suitable for discriminate the liquid RI and temperature with high sensitivity.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 3 of 3